
J. Fluid Mech. (1999), vol. 391, pp. 45–65. Printed in the United Kingdom

c© 1999 Cambridge University Press

45
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The coupled Kuramoto–Sivashinsky (CKS) equations for multilayer downflowing
films are derived and explored. The CKS equations exhibit a wealth of dynamical
behaviour, displaying travelling periodic waves, regular and chaotic-like patterns,
coexistence of different attractors, and perfect and imperfect synchronization of the
interfaces. New physical effects are found, such as suppression of the Rayleigh–Taylor
instability for heavy-top stratified films, and new surface-tension-driven instability.

1. Introduction
The downflowing homogeneous viscous film is one of the most graphic and ex-

perimentally accessible examples of an intrinsically unstable extended system. The
flow has attracted much attention due to its conceptual simplicity, rich dynamical
phenomenology, and technological relevance (see review papers by Lin 1983a and
Chang 1994). Related interfacial flows were surveyed in a monograph by Joseph &
Renardy (1993).

The basic result of Mei (1966) is that the medium-amplitude waves in creeping film
flows are described by the Burgers equation,

hτ + hhξ = hξξ. (1)

Here h(ξ, τ) ∼ H(x, t) − 1 is the rescaled deviation of the interface H from its
steady-state location 1, and ξ and τ are the scaled downstream coordinate and time,
respectively.

The impact of inertia and surface tension leads to a new physics. The film flow
becomes susceptible to long-wavelength instability due to inertia (Benjamin 1957; Yih
1963). Surface tension damps short-wavelength modes. Nepomnyashchy (1974) and
Homsy (1974) derived the equation governing the interfacial dynamics of homoge-
neous films in the limiting case of large surface tension. This equation has appeared
further in many physical contexts such as drift waves in plasma (Cohen et al. 1976),
spatial patterns in chemical oscillations (Kuramoto & Tsuzuki 1976), unstable flame
fronts (Sivashinsky 1977), and other interfacial problems (Hooper & Grimshaw 1985;
Shlang et al. 1985). The equation is known today as the Kuramoto–Sivashinsky (KS)
equation

hτ + hhξ + hξξ + hξξξξ = 0. (2)
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The KS equation has enjoyed much attention due to its ability to display turbulence-
like behaviour (see the review paper by Cross & Hohenberg 1993, with further
references).

Multiple-layer stratified viscous films constitute a natural generalization of a ho-
mogeneous film. Such films are encountered in wood stacks in cooling towers, evap-
orators, density currents, liquid extraction, and on wetted-wall pollutant absorbers
and scrubbers. In oil transportation, the thin films are used as lubricant layers. A
model of multilayer film flow has been used in geophysical problems to decipher the
generation of transverse ridges occurring on the surfaces of rock glacier forms. An
especially important application of multilayer liquid films is in the precision coating
of colour photographic films and papers, which often involve more than 10 different
layers. In chemical technology the interfacial waves enhance the transport of mass,
heat and momentum across the film, whereas formation of the waves in coating layers
is highly undesirable.

Linear stability analysis of multilayer film flows has been addressed in a number
of papers (Kao 1965a, b, 1968; Akhtaruzzaman, Wang & Lin 1978; Wang, Seaborg
& Lin 1978; Lin 1983b; Loewenherz & Lawrence 1989; Weinstein & Kurz 1991;
Chen 1993; Kobayashi 1992, 1995). In the recent experiments by Kurz, Weinstein
& Ruschak (1994) and Kobayashi (1995) the growing unstable modes and nonlinear
waves in multilayer films were identified and described.

Kliakhandler & Sivashinsky (1997) studied the nonlinear dynamics of creeping
multilayer film flows and extended the result of Mei, equation (1), to coupled Burgers
equations. It turns out that the presence of additional interfaces and the corresponding
coupling of the equations lead to new instabilities and patterns unfeasible in the single
Burgers equation (1).

Inertia, unstable density stratification, and surface tension lead to the single KS
equation in homogeneous film and two-layer Couette and Poiseuille flows. It is
reasonable to expect that in multilayer film flows these ingredients will lead to
coupled KS equations, where the coupling will result in a wealth of new interesting
nonlinear dynamical behaviour.

The objective of the present work is to derive and to study the coupled Kuramoto–
Sivashinsky (CKS) equations for multiple-layer stratified film flows.

2. Statement of the problem
Consider a two-dimensional multiple-layer stratified film of incompressible New-

tonian liquids, involving n layers with viscosities µ1, µ2, etc. and densities ρ1, ρ2, etc.
flowing down an inclined plane, figure 1. The associated steady-state planar interfaces
are marked as H0

1 , H
0
2 , etc. The surrounding atmosphere is assumed to be a weightless,

inviscid quiescent gas.
In terms of dimensionless variables (defined below), the flow equations are

∂ui

∂x
+
∂vi

∂y
= 0, (3)
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Figure 1. Geometry of a multilayer downflowing film.

Here x, y are the streamwise and spanwise coordinates, respectively, in units of the
unperturbed total film thickness d; u, v are the corresponding velocity components,
referred to U = gd2ρ1 sin θ/2µ1, where g is the gravitational acceleration, pi is the
pressure in the ith layer in units of ρ1gd sin θ, t is the time referred to d/U; the index
i = 1, 2, . . . , n marks the first H2 < y < H1, second H3 < y < H2, . . ., nth 0 < y < Hn

layers respectively, where Hi(x, t) is the ith interface locus; mi = µi/µ1 and ri = ρi/ρ1

are the ratios of viscosity and density, respectively; R = Udρ1/µ1 = gd 3ρ2
1 sin θ/2µ2

1

is the Reynolds number.
The interface boundary conditions are expressed in the terms of the normal ni

and curvature Si of the ith interface Hi, and the stress tensor Tj of the jth layer
(j = i− 1, i):

ni =
1√

1 +
(
∂Hi/∂x

)2
(−∂Hi/∂x, 1), Si =

∂H2
i /∂x

2

(1 +
(
∂Hi/∂x

)2
)3/2

, (6)
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(
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(
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mj
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− pj

 (7)

(there is no summation here over indices).
On the bottom y = 0, at the free surface y = H1(x, t) and at the inner interfaces

y = Hi(x, t), i = 2, 3, . . . , n, the following boundary conditions are imposed:

un = vn = 0 at y = 0, (8)

ui−1 = ui, vi−1 = vi at y = Hi, i = 2, 3, . . . , n, (9)

Ti−1 · ni = Ti · ni −WγiSini at y = Hi, i = 2, 3, . . . , n, (10)

T1 · n1 = p0n1 −WS1n1 at y = H1, (11)

∂Hi

∂t
+ ui

∂Hi

∂x
− vi = 0 at y = Hi, i = 1, 2, . . . , n. (12)
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Here γi = Wi/W1 is the surface tension ratio, where Wi is the dimensionless surface
tension (Weber number) at the ith interface in units of ρ1gd

2 sin θ; W = W1 =
ρ1gd

2 sin θ is chosen as a typical surface tension; p0 = const. is the atmosphere
pressure. Relations (8)–(12) imply the no-slip condition at the bottom plane, the
continuity of the velocity and continuity of the stress at the inner interfaces, continuity
of the stress at the outer interface, and impermeability of the interfaces (kinematic
boundary conditions), respectively.

Employing continuity equation (3) and boundary conditions (8), (9), the kinematic
boundary conditions (12) may be represented in a divergent form of the conservation
laws,

∂Hi

∂t
+

∂

∂x

n∑
k=i

Ik = 0, Ik =

∫ Hk

Hk+1

uk dy. (13)

Here Ik is the volumetric flow rate between kth and (k+1)th interface, where Hn+1 = 0
corresponds to the rigid wall.

Equations (3)–(5) jointly with the interfacial conditions (8)–(11) and (13) constitute
a free-boundary problem for Hi(x, t), i = 1, 2, . . . , n.

3. Derivation of coupled Benney and coupled Kuramoto–Sivashinsky
equations

To clarify the derivation of the CKS equations, I outline the conventional techniques
for derivation of the single KS equation for a homogeneous film.

The Reynolds number of the flow is assumed to be not too large, i.e. the lubrica-
tion approximation is used. The case of relatively large Reynolds numbers may be
described in terms of the boundary layer approximation which is not considered here
(see review paper of Chang 1994, with further references).

The single KS equation may be derived by the multi-scale asymptotic expansions
following Nepomnyashchy (1974). Linear stability analysis yields the range of param-
eters where the downflowing film is susceptible to long-wavelength instability. Near
the stability threshold the interfacial waves are expected to be small amplitude and
slowly varying in both time and space. The typical length scale of the waves therefore
significantly exceeds the thickness of the film, and one can separate the variables of
the problem along and across the film. As a result, one obtains the KS equation
directly in terms of the interface locus.

The single KS equation may also be extracted from the equation derived by Benney
(1966). In this approach, the wave slopes are assumed to be small whereas the wave
amplitudes are arbitrary. The long-wavelength, or gradient, asymptotic expansion
leads to the strongly nonlinear equation for the interface evolution. The shortened
version of the original Benney equation, dominated by strong surface tension, acquires
the form

∂H

∂t
+

∂

∂x

[
2
3
H3 +

(
8
15
RH6 − 2

3
H3
) ∂H
∂x

+ 2
3
WH3 ∂

3H

∂x3

]
= 0. (14)

Here H(x, t) is the locus of the film interface. The weakly nonlinear limit of the
Benney equation (14) for W � 1 (combined with transition to a special reference
frame) leads to the KS equation. This procedure was first used by Homsy (1974).
Note that Burgers equation (1) may also be recovered as a special case of the Benney
equation (14).
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Both procedures may be applied to multilayer films to derive the CKS equations.
In the present work, the CKS equations are derived through the coupled Benney
equations. The reasons are that (i) the coupled Benney equations are themselves
expected to be an interesting dynamical model and a source of other models, and
(ii) all special cases may be extracted directly from the coupled Benney equations,
whereas the application of asymptotic expansions formally requires one to repeat the
whole derivation for each new kind of instability.

The derivation is straightforward but quite long. I therefore display the principal
steps of the procedure and present the final result, omitting the tedious algebra
involved.

One assumes that the typical surface tension W is large, W � 1; all interfacial
tensions are of the same order, i.e. γi ' O(1) for all i. This ensures that the surface
tension effects are retained in the leading-order approximation.

Introduce the small parameter ε � 1 (akin to the shallow water parameter), and
the following scaled variables:

ξ = εx, η = y, τ = εt, (15)

Ui = ui, Vi = ε−1vi, Pi = pi, Ω = ε2W. (16)

In the new variables, the flow equations (3)–(5) acquire the following form:
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= 0, (17)
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The boundary conditions (8)–(11) become

Un = Vn = 0 at η = 0, (20)

Ui−1 = Ui, Vi−1 = Vi at η = Hi, i = 2, 3, . . . , n, (21)

Ti−1 · ni = Ti · ni − ΩγiSini at η = Hi, i = 2, 3, . . . , n, (22)

T1 · n1 = P0n1 − ΩS1n1 at η = H1, (23)

∂Hi
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+
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Uk dη, (24)

where now
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The velocity and pressure in the layers are sought as asymptotic expansions in ε,

(Ui, Vi, Pi) = (U(0)
i , V

(0)
i , P

(0)
i ) + ε(U(1)

i , V
(1)
i , P

(1)
i ) + ε2(U(2)

i , V
(2)
i , P

(2)
i ) + · · · . (27)

Here (U(0)
i , V

(0)
i , P

(0)
i ) correspond to the basic steady-state unidirectional flow. This

approach leads to a hierarchy of successive approximations.
The zeroth-order problem yields

∂Hi

∂τ
+
∂Qi

∂ξ
= 0, or

∂Hi

∂t
+
∂Qi

∂x
= 0. (28)

Functions Qi(H1, H2) for two-layer film flows are presented in the Appendix. When
the two-layer film degenerates to the homogeneous film, (28) reduce to a single
leading-order equation for a homogeneous film,

∂H

∂t
+
∂Q

∂x
= 0, Q = 2

3
H3. (29)

The first-order expansion results in

∂Hi

∂τ
+
∂Qi

∂ξ
+ ε

∂

∂ξ

[(
cot θ Gij + RTij

) ∂Hj

∂ξ
+ ΩFij

∂3Hj

∂ξ3

]
= 0. (30)

Here the sum convention for repeated indices is adopted. The matrices Gij , Tij , Fij
are associated with the buoyancy, inertia, and surface tension impact, respectively.
For two-layer flow, these matrices are presented in the Appendix. Similarly to the
Benney equation (14), Qi, Gij and Fij are homogeneous polynomials of third order
with respect to H1, . . . , Hn, and Tij are homogeneous polynomials of sixth order.

Equations (30) may be recast into the coupled Benney equations in the original
variables,

∂Hi

∂t
+

∂

∂x

[
Qi +

(
cot θ Gij + RTij

) ∂Hj

∂x
+WFij

∂3Hj

∂x3

]
= 0. (31)

If the multilayer flow degenerates to the flow of a homogeneous film, e.g. for
two-layer system H2 = 0, or H2 = H1, or r2 = m2 = 1, the coupled Benney equations
(31) reduce to the single Benney equation (14).

Weakly nonlinear approximation of (31) leads to the CKS equations:

∂hi

∂t
+ αij

∂hj

∂x
+ βijk

∂hjhk

∂x
+
(
cot θ ϑij + Rσij

) ∂2hj

∂x2
+Wχij

∂4hj

∂x4
= 0. (32)

Here

hi(x, t) = Hi −H0
i , (33)

αij =
∂Qi

∂Hj

(1, H0
2 , . . . , H

0
n ), βijk =

1

2

∂2Qi

∂Hj∂Hk

(1, . . . , H0
n ), (34)

ϑij = Gij(1, . . . , H
0
n ), σij = Tij(1, . . . , H

0
n ), χij = Fij(1, . . . , H

0
n ), (35)

i, j, k = 1, 2, . . . , n, (36)

with hi being the perturbations of the planar undisturbed interfaces H0
i , figure 1.

The constant tensors αij , βijk , ϑij , σij , χij are determined by the basic unidirectional
steady flow, i.e. by the distribution of viscosities µi, densities ρi, layer widths H0

i , and
interfacial tensions Wi. The concrete numerical values of the tensors are evaluated
using the Mathematica software.
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Equations (32) are the subject of the further study. They incorporate kinetic
αij∂hj/∂x, buoyancy ϑij∂

2hj/∂x
2, inertia σij∂

2hj/∂x
2, surface tension χij∂

4hj/∂x
4, and

nonlinear βijk∂hjhk/∂x effects. The single-interface counterpart of (32) is the single
KS equation in a quiescent coordinate frame.

The mean drift of interfacial disturbances in the single KS equation (2) may be
eliminated by transition to the special reference frame. However, this elimination
cannot be done for the CKS equations (32) in multilayer films. The reason is that
the eigenvalues of the matrix αij are different, in general. As a result, the interfaces
are strongly coupled. This leads to new dynamic phenomena unfeasible in the flow of
homogeneous film.

Note that unstable density stratification and inertia are expected to induce destabi-
lizing effects in the long-wavelength range whereas surface tension provides damping
of short-wavelength modes. Growth of unstable long-wavelength modes in (32) should
be restrained by the nonlinear quadratic term. As a result, (32) are expected to be
well-behaved dynamically.

In the case of a stabilizing density stratification, examined by Kliakhandler &
Sivashinsky (1997), the interfacial dynamics of a multilayer system may be captured
by simpler model. Formally, this situation may be described by truncation of (32),

∂hi

∂t
+ αij

∂hj

∂x
+ βijk

∂hjhk

∂x
+ cot θ ϑij

∂2hj

∂x2
= 0. (37)

Short-wavelength modes in (37) are damped due to stabilizing density stratification.
Equations (37) exhibit instability of so-called alpha-effect type, arising due to

appearance of complex eigenvalues of matrix αij . This kind of instability may occur
for (32) as well. The general contribution of the alpha-effect to the behaviour of
(32) may be understood from model (37) (cf. Kliakhandler & Sivashinsky 1997). The
possible dynamical responses of the full equations (32) in the case of the alpha-effect
are not discussed here.

A few shortened versions of (32) are further explored to elucidate the role of surface
tension, unstable buoyancy stratification, and inertia terms.

4. The surface-tension-driven instability
Consider vertical creeping film flow where the impact of surface tension may be

studied in its simplest form. In this case the buoyancy and inertia terms drop out
from the governing equations (32), resulting in

∂hi

∂t
+ αij

∂hj

∂x
+ βijk

∂hjhk

∂x
+Wχij

∂4hj

∂x4
= 0. (38)

A numerical check shows that the eigenvalues of the matrix χij are always positive
and real. Surface tension therefore suppresses the short-wavelength modes. As a result
the system (38) is quite well-behaved.

To explore the dynamical properties of (38), scrutinize the linear stability problem
as a first step. One assumes that the eigenvalues of the matrix αij are real. Set

hi = ai exp [i(kx− ωt)], (39)

with k being the real wavenumber and ω being the complex frequency. One considers
therefore the ensuing stability problem in its temporal form. Substitution of (39) into
the linearized (38) leads to the following eigenvalue problem:

iωai = (ikαij +Wk4χij)aj. (40)
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The truncated eigenvalue problem of (40), ωai = kαijaj , ends up with pure real
solutions ωm = kλ(α)

m , m = 1, . . . , n. Here λ(α)
m are real eigenvalues of the matrix αij .

To clarify the impact of surface tension, write the next term of the long-wavelength
expansion of relation (40),

ωm = kλ(α)
m + ik4Lm, m = 1, . . . , n. (41)

Here the constants Lm are defined by both matrices αij and χij ,

Lm ≡ L(αij , χij)m =

n∑
i,j=1

(−1)i+jχijM
(α)
ij + λ(α)

m tr χij

tr αij − nλ(α)
m

. (42)

Here M(α)
pq is the pqth minor of matrix αij . Numerical inspection shows that in a

wide parameter range some Lm become positive. This implies the long-wavelength
instability of the underlying multilayer film flow. This surface-tension-driven instability
appears due to interaction between the advective (matrix αij) and damping (matrix
χij) effects. A similar instability was identified by Kliakhandler & Sivashinsky (1995)
in three-layer Poiseuille flows.

In the absence of surface tension the hyperbolic part of (38) will generate shock
solutions. The surface tension may be regarded as a mechanism which smooths the
shocks. However, in the presence of the surface-tension-driven instability found, the
solutions of (38) with vanishing surface tension do not converge to the solutions of
the pertinent hyperbolic system. The mathematical feasibility of such an outcome has
already been ascertained by Majda & Pego (1985) for second-order parabolic systems
with viscous-like damping.

The destabilizing role of surface tension is well known in jet flows (e.g. Yarin 1993).
In plane flows, however, the surface tension is traditionally regarded as a stabilizing
agent. Hence, one should keep in mind that the surface tension, while suppressing
short-scale modes, may however destabilize multilayer flows in the long-wavelength
range.

Figure 2 shows the marginal stability curves of the surface-tension-driven instability
for two-layer film flows in the (m2, H

0
2 )-plane. In this case relation (42) reduces to

Lm =
α12χ21 − α22χ11 + α21χ12 − α11χ22 + λ(α)

m (χ11 + χ22)

α11 + α22 − 2λ(α)
m

, m = 1, 2. (43)

As is seen, the instability emerges when the lower layer is less viscous than the outer
one. An interesting, and somewhat counterintuitive, conclusion is that two-layer flow
of miscible liquids (γ2 = 0) may be destabilized by the surface tension on the outer
interface (curve 6).

In this case, however, matrix χij has a zeroth eigenvalue and damping of short-
wavelength modes is failed. Near the inner interface the flow may be regarded as
a viscous analogue of the classical Kelvin–Helmholtz problem. In such system the
inner interface undergoes weak short-wavelength instability (Hooper & Boyd 1983).
A description of this complicated situation, however, is a much harder problem and
falls beyond the scope of the present study.

Figure 3 shows typical results of a linear stability analysis for two-layer flows for
surface-tension-induced instability. Relations (40), (41), and simple similarity reasons
show that the following estimates characterize the instability:

Imω ∼ −k4 at k � 1, Imω ∼ k4 at k � 1, kc ∼W−1/3. (44)
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Figure 2. Marginal stability curves of the surface-tension-driven instability in the (m2, H0
2 )

parameter plane. Curves 1–6 correspond to W2 W1 = γ2 = 16, 4, 1, 1/4, 1/16, 0 respectively.

Here kc is the wavenumber of the most unstable mode, figure 3(a). As follows from
figure 3, the instability is convective: all unstable modes travel with finite velocities.
Another outcome from figure 3(b) is that (38) contain weak dispersion: group and
phase velocities depend slightly on wavenumber k.

Both matrices αij and χij depend on whole flow field. It seems therefore that the
surface-tension-driven instability cannot be attributed to local mechanisms near the
interfaces. To understand the instability, consider the following linearized version of
(38):

∂

∂t

(
h1

h2

)
+

(
a b
0 0

)
∂

∂x

(
h1

h2

)
+

(
ε 0
c ε

)
∂4

∂x4

(
h1

h2

)
= 0. (45)

Here a, b, c ' O(1), 0 < ε� 1, ω = (−ak−2iεk4±k(−a2 +4ibck3)1/2)/2 and Imω ∼ k4

at k � 1. This deliberately simple form of matrices αij and χij is minimally sufficient
for the generation of surface-tension-driven instability with damping of short modes.
Simple analysis shows that two modes exist in (45). The first mode is mostly travelling
and may be associated with first interface, whereas the second mode is mostly standing
and may be associated with second interface. For first mode, h2 ' −ick3 h1/a, and
therefore the second interface is only slightly stirred with phase shift ±π/2. For the
second mode, h2 ' h1ca/(bc − 2aε) + ih1ck

3/a. Therefore, the interfaces have almost
opposite phases, being of the same order of magnitude. This second type of excitation
is realized for real film flows. The crucial point here is that Λ = |bc/aε| > 1. The
numerator of Λ measures the coupling between interfaces, since b and c are on the
skew diagonals in matrices αij and χij , respectively. The denominator of Λ measures
the self-interaction of the interfaces. Hence, if Λ > 1, or the coupling is sufficiently
strong, the system becomes unstable.

The nonlinear dynamics of (38) was studied by direct numerical simulations.
Throughout this study, nonlinear evolution equations were simulated for periodic
boundary conditions. The pseudo-spectral technique was employed for the spatial
discretization and the Adams–Bashforth scheme for the time advance. The standard
routines C06EAF and C06EBF for the FFT, and D02CBF for the Adams–Bashforth
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Figure 3. Results of a study of the linear stability problem for two-layer creeping flow of a
vertically falling film for the surface-tension-driven instability: (a) typical growth rate Imω de-
pendence on wavenumber k, (b) typical group Vg = ∂ωr/∂k (dashed line) and phase Vp = ωr/k
(solid line) velocities vs. wavenumber k. Parameters of the flow are r2 = 1, m2 = 0.3, H0

2 = 0.3,
W1 = W2 = 100 (γ2 = 1).

scheme from the NAG routine library were implemented. The number of spatial
discretization points was chosen such that the typical wavelength λc = 2π/kc was
covered by at least 12 points (in most cases more than 20 points per λc were used),
which ensures fair resolution of the solutions computed. The time step was chosen
automatically. As initial data in all simulations, random fields or smooth functions
were used. The length of the spatial interval was taken to be 10λc.

Figure 4 shows typical results of numerical simulation of (38) under the surface-
tension-induced instability for two-layer flow. The typical spatial scale of the waves
is close to λc obtained from the linear stability analysis. The interfaces assume a
varicose-like (out-of-phase), perfectly synchronized shape moving with constant ve-
locity without change. The frame speed is close to the pertinent group velocity of
the first unstable mode on figure 3 at kc. As follows from figure 4, (38) apparently
admit stable solutions in the form of periodic travelling waves. The possible forma-
tion mechanism of these travelling waves is a combination of the peak-like growth
rate function of figure 3(a), and the presence of weak dispersion. As a result, the
most unstable mode survives; all other modes are slaved by the leading mode as a
consequence of their relatively weak instability rate and some dispersion.

For the case described W1 = W2 = 100, and matrices αij , βijk, χij are

αij =

(
4.38 2.28667
0.3 1.7

)
, β1jk =

(
3.4 3.26667

3.26667 −3.26667

)
, (46)

β2jk =

(
0 1
1 2.3333

)
, χij =

(
1.68867 0.27

0.27 0.06

)
. (47)



Long interfacial waves in multilayer thin films 55

–0.04

100

110

0 5

x/λc

10

0
0.04

120

t
τc

h2 (x, t)

–0.02

100

110

0 5 10

0

0.02

120

t
τc

h1 (x, t)

Figure 4. Interfaces from (38) for two-layer flow in a reference frame moving with speed 1.449.
Parameters of the flow are identical to those of figure 3. Here τc = 1/Imω(kc) is the typical time of
growth of the most unstable mode.

For three-layer flows the following interesting effect was identified: depending
on initial conditions, the interfaces may acquire forms different from the perfectly
synchronized periodic travelling waves. For instance, a nearly periodic form, figure
5(a), or an irregular form, figure 5(b), may be reached. In both cases, the typical
length scale of the waves is close to λc, the interfaces vary slightly in time, and
interfacial synchronization is not perfect. However, the differences in the shape of the
interfaces and in the distribution of energy in spectra are preserved for a long time.
In particular, the irregular interfaces at figure 5(b) involve a plateau. This implies that
for three-layer flows (38) apparently admit several attractors.

5. Influence of destabilizing density stratification
To demonstrate the role of buoyancy variations, examine the creeping flow of a

multilayer film with destabilizing (heavy-top) density stratification (rn < rn−1 < · · · <
r1 = 1) over an inclined plane. Equations (32) result in the following model:

∂hi

∂t
+ αij

∂hj

∂x
+ βijk

∂hjhk

∂x
+ cot θ ϑij

∂2hj

∂x2
+Wχij

∂4hj

∂x4
= 0. (48)
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Figure 5. Snapshots of interfaces from (38) for three-layer flow acquiring two different states.
Parameters of the flow are r2 = 2, r3 = 3, m2 = 0.7, m3 = 0.3, H0

2 = 0.7, H0
3 = 0.3,

W1 = W2 = W3 = 100 (γ2 = γ3 = 1).

Consider the linear stability problem for (48). Substituting hi = ai exp [i(kx − ωt)] in
the linearized version of (48) leads to the following eigenvalue problem:

iωai = (ikαij − cot θ k2ϑij +Wk4χij)aj. (49)

As before, eigenvalues λ(α) of matrix αij are assumed to be real.
A numerical check shows that matrix ϑij has real positive eigenvalues for the

heavy-top stratification. This is evidence of the predisposition of such systems to
the Rayleigh–Taylor instability. Nevertheless, careful analysis shows that in spite
of heavy-top stratification, the Rayleigh–Taylor instability in (48) and (49) may be
completely suppressed.

To clarify the situation, consider the long-wavelength expansion of problem (49),

ωm ∼ kλ(α)
m + iCmk2, Cm =L(αij , ϑij)m, m = 1, . . . , n, k � 1. (50)

Here the operator L is defined by (42).
For positive C (50) implies the emergence of the Rayleigh–Taylor type instability.

Note that in two-layer Couette and Poiseuille flows with a single interface, the
parameter C is proportional to the density jump. Therefore, for the two-layer heavy-
top shear flows C > 0 and the Rayleigh–Taylor instability is inevitably induced.

However, in multilayer film flows C depends both on the advective, αij , and buoy-
ancy terms, ϑij . Numerical inspection shows that even for the heavy-top stratification
all Cm may become negative. This implies that in the long-wavelength range the
Rayleigh–Taylor instability of heavy-top stratified film may be suppressed due to
interaction of buoyancy forces and shear effects. Figure 6 shows the curves C = 0 in
the (m2, H

0
2 ) parameter plane for two-layer heavy-top stratified film. The range with

C < 0 appears to be rather wide even though the upper liquid is five times more
dense than the lower one.

As a result, a heavy-top multilayer system may be entirely stable due to the
additional impact of surface tension. Figure 7 shows a typical plot of Imω vs. k for
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Figure 7. Heavy-top linearly stable two-layer system. The flow parameters are θ = π/4, r2 = 0.5,
m2 = 0.8, H0

2 = 0.8, W1 = 100, W2 = 1 (γ2 = 0.01).

heavy-top stratified flow with suppressed Rayleigh–Taylor instability. For k � 1, the
flow is stable, Imω < 0, since C < 0. Furthermore, the destabilizing impact of the
heavy-top stratification reduces the damping rate of shorter modes, k ∼ 0.4–0.6 in
figure 7. Yet the surface tension overcomes this trend. As a result, all modes become
stable.

As already mentioned, two-layer single-interface shear flows with heavy-top strat-
ification are subject to the Rayleigh–Taylor instability. Interaction of the instability
with the surface tension and nonlinear effects leads to the KS equation and nonlinear
saturation of unstable modes (Babchin et al. 1983). In contrast to that, in multilayer
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Figure 8. Growth rate Imω vs. wavenumber k in two-layer heavy-top system for the
Rayleigh–Taylor-type instability, damped by the surface tension. Parameters of the flow are θ = π/4,
r2 = 0.6, m2 = 0.2, H0

2 = 0.6, W1 = W2 = 100 (γ2 = 1).

multi-interface film flows the Rayleigh–Taylor instability, due to a curious interaction
of advective, buoyancy and surface tension effects, may be completely suppressed.

Note however that heavy-top stratified film flow will be apparently unstable in the
transversal direction which is not considered here.

Let us investigate the case when the Rayleigh–Taylor-type instability is induced. In
this case growth rate Imω ∼ k2. Short-scale modes are damped as k4 due to surface
tension. Figure 8 shows the pertinent solution of the eigenvalue problem (49). The
instability is convective: all unstable modes travel with finite velocities (plots of group
and phase velocities are similar to those on figure 3(b), and are not presented here).
A similar dependence Imω(k) appears for the single KS equation.

Figure 9 shows typical spatio-temporal evolution of the interfaces for the heavy-top
stratification in a moving reference frame. The frame speed is close to the pertinent
group velocity of the first unstable mode at kc, similar to the dynamics on figures 4
and 3. For this case W1 = W2 = 100, θ = π/4, and matrices αij , βijk, ϑij , χij are

αij =

(
8 −0.4

1.8 2.76

)
, β1jk =

(
6.8 2
2 −4

)
, β2jk =

(
0 3
3 −0.4

)
, (51)

ϑij =

( −3.16267 0.576
−1.44 0.288

)
, χij =

(
3.16267 1.44

1.44 0.72

)
. (52)

The shape of the waves is similar to that of the single KS equation (Shraiman
1986). The interfaces are perfectly synchronized. Since the instability rate is quite
small in this case, figure 8, the waves are saturated at small amplitude. The typical
length scale of the waves is close to λc, i.e. to predictions of linear stability analysis.
The time scale of wave modulations is of order of a few τc = 1/Imω(kc), i.e. of the
same order as in the single KS equation.
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Figure 9. Spatio-temporal interfacial evolution described by (48) for the heavy-top flow in the
reference frame moving with speed 2.051. The flow parameters are identical to those of figure 8.

6. Inertia effects
The impact of inertia may be studied in its simplest form for the multilayer film

falling down a vertical wall. Equations (32) acquire the following form:

∂hi

∂t
+ αij

∂hj

∂x
+ βijk

∂hjhk

∂x
+ Rσij

∂2hj

∂x2
+Wχij

∂4hj

∂x4
= 0. (53)

The linear stability analysis of (53) shows that inertia invariably exerts a destabi-
lizing influence,

Imω ∼KRk2, K =L(αij , σij) > 0 (54)

(the operatorL is defined in (42)). This kind of inertia-induced instability is the same
as found by Benjamin (1957) and Yih (1963) for the flow of a homogeneous film, and
was reported by Kao (1965a, b, 1968) for two-layer film flows.

Figure 10 shows typical dependences of the temporal growth rate Imω on wave
number k for a two-layer falling film. As for previous instabilities, this instability is
convective.
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falling films for the inertia-induced instability. Parameters of the flows are r2 = 1, m2 = 0.4, H0

2 = 0.6,
R = 1, W1 = W2 = 100.

The results of numerical simulations of (53) are shown on figure 11. For this case
R = 1,W1 = W2 = 100, and matrices αij , βijk, ϑij , χij are

αij =

(
4.52 0.48
0.9 2.1

)
, β1jk =

(
3.8 1.2
1.2 −1.2

)
, β2jk =

(
0 1.5

1.5 1

)
, (55)

σij =

(
6.5623 1.02736
2.86476 0.44424

)
, χij =

(
1.60267 0.72

0.72 0.36

)
. (56)

The typical length scale of the waves is close to λc. The instability rate is not too
small, figure 10. As a result, the amplitude of the waves is larger than that in the
case considered in the previous Section. Moreover, the amplitude ratio in these cases
(compare, for instance, amplitudes of upper interfaces) is about 4× 10−1/8× 10−5 '
5000, that is of the same order as the ratio of instability rates 6×10−2/2×10−5 ' 3000.
This observation is in accordance with the statement that the growth of unstable
modes is restrained by quadratic terms. It is interesting that the synchronization is
not perfect in this case: though, in general, the whole structure drifts ‘in phase’, the
lower interface exhibits independent ripples. The spatio-temporal dynamics of the
upper interface is similar to the dynamics displayed by the single KS equation. At
the same time, the dynamics of the lower interface is less regular than in the single
KS equation. The difference between dynamics shown on figures 11 and 9 stems
seemingly from the fact that the second mode on figure 10 is damped much more
slowly than on figure 8.

7. Summary
In the present work, the following results have been obtained.
The coupled nonlinear Benney equation for multilayer stratified downflowing films

incorporating kinetic, buoyancy, inertia, and surface tension effects is

∂Hi

∂t
+

∂

∂x

[
Qi +

(
cot θ Gij + RTij

) ∂Hj

∂x
+WFij

∂3Hj

∂x3

]
= 0. (57)

The weakly nonlinear approximation of the coupled Benney equation (57) acquires
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Figure 11. Spatio-temporal interfacial evolution described by (53) in a reference frame moving with
speed 4.72. The whole structure is advected at a speed close to the associated group velocity at kc.
Parameters of the flow are identical to those of figure 10.

the form of the coupled Kuramoto–Sivashinsky (CKS) equation,

∂hi

∂t
+ αij

∂hj

∂x
+ βijk

∂hjhk

∂x
+
(
cot θ ϑij + Rσij

) ∂2hj

∂x2
+Wχij

∂4hj

∂x4
= 0. (58)

To clarify the role of the terms involved, a few shortened versions of (58) have been
considered.

The surface-tension-driven instability of creeping multilayer film flow down vertical
wall is described by the following model

∂hi

∂t
+ αij

∂hj

∂x
+ βijk

∂hjhk

∂x
+Wχij

∂4hj

∂x4
= 0. (59)

In two-layer flows, the interfaces governed by (59) assume form of periodic travelling
waves. In three-layer flows, (59) exhibit an interesting phenomenon: depending on
initial conditions, the interfaces may acquire the form of nearly periodic, or irregular
waves.
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The CKS equation for creeping film flows with unstable density stratification over
an inclined plane is

∂hi

∂t
+ αij

∂hj

∂x
+ βijk

∂hjhk

∂x
+ cot θ ϑij

∂2hj

∂x2
+Wχij

∂4hj

∂x4
= 0. (60)

The interfaces governed by (60) display perfect synchronization of the interfaces, and
their dynamics is close to that of the single KS equation.

Finally, the dynamics of (58) incorporating the impact of inertia is somewhat
different from that of the single KS equation. Loosely speaking, the interfaces are
chaotic, and are not perfectly synchronized.

Numerical simulations of interfacial dynamics in other cases which are not shown
here (i.e. flow with finite Reynolds number over an inclined plane, the simultaneous
presence of few described instabilities, etc.), show interfacial dynamics which are
more or less similar to the cases considered. The detailed investigation of observed
dynamical phenomena, i.e. travelling periodic waves, the presence of a few attractors,
chaotic-like patterns, perfect and imperfect synchronization, will be the subject of
future works.

Note that the velocities of the interfaces in steady-state flow of multilayer film are
different. Nevertheless, the wavy interfacial structures drift ‘in-phase’. The outcome
is that model (58), displaying different types of coherent dynamics, may serve as a
model of ‘collective behaviour’ for strongly interacting waves.
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Appendix. The kinetic, buoyancy, surface tension and
inertia terms for two-layer flows

The flow rates Qi of two-layer flow are given by (here m = m2 and r = r2),

Q1 = (6H2
1H2 − 9H1H

2
2 +3H3

2 + 2H3
1m− 6H2

1H2m

+6H1H
2
2m− 2H3

2m+ 3H1H
2
2 r −H3

2 r)/3m, (A 1)

Q2 = H2
2 (3H1 − 3H2 + 2H2r)/3m. (A 2)

The buoyancy impact is described by the matrix Gij ,

G11 = 2(−3H2
1H2 + 3H1H

2
2 −H3

2 −H3
1m+ 3H2

1H2m− 3H1H
2
2m+H3

2m)/3m, (A 3)

G12 = H2
2 (−3H1 +H2)(r − 1)/3m, (A 4)

G21 = H2
2 (−3H1 +H2)/3m, G22 = 2H3

2 (1− r)/3m. (A 5)

The surface tension influence is described by the matrix Fij (here γ2 = W2/W1),

F11 = (3H2
1H2 − 3H1H

2
2 +H3

2 +H3
1m− 3H2

1H2m+ 3H1H
2
2m−H3

2m)W1/3m, (A 6)

F12 = γ2

(
(3H1 −H2)H

2
2W2/3m

)
, (A 7)

F21 = (3H1 −H2)H
2
2W1/3m, F22 = 2γ2H

3
2W2/3m. (A 8)
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The inertia impact is controlled by the martix Tij ,
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